COMMUNICATION TO THE EDITOR

Synthesis and Biological Evaluation of Caloporoside Analogs

Sir:

Caloporoside (1) is a novel phospholipase C inhibitor isolated from culture filtrates of *Caloporus dichrous*¹⁾, and structurally a salicylic acid derivative containing a β -mannopyranoside. Deacetyl-caloporoside (**2b**) and its analog **3b** have been independently reported to inhibit the binding of ³⁵S-labeled *t*-butylbicyclophosphorothionate (³⁵S-TBPS) to the GABA_A/benzodiazepine chloride channel receptor complex *in vitro*²⁾.

Very recently, we have synthesized deacetyl-caloporoside (2b) and its α -mannoside analog (2a), and then confirmed the structures of natural products 1 and 2b³⁾.

Herein, we describe the synthesis and preliminary biological evaluation of compounds 2a, 2b, 3a, 3b and

13 to understand the structure-activity relationships.

The syntheses of these compounds originated from the derivatives of D-mannose (4), (R)-1,3-butanediol (8) and salicylic acid (11) through glycosylations and Wittig reactions³⁾.

Reaction of the protected mannopyranose 4 with 2-naphthalenethiol gave the 1-thio-mannoside 5 (85%, syrup) corresponding to a glycosyl donor. On the other hand, NaBH₄ reduction of 4 followed by selective silylation gave the alcohol 6 corresponding to a glycosyl acceptor. The glycosylation of 5 with 6 was carried out, according to our procedure³⁾ developed for the synthesis of β -mannopyranosides, in EtOAc with NIS and 0.15 M TfOH in CH₂Cl₂ at -40°C for 1.5 hours to give the corresponding α - and β -mannopyranosides, which were de-*O*-silylated with TBAF and oxidized successively with oxalyl chloride-DMSO and then with sodium chlorite to afford the carboxylic acids **7a** [19% total yield, syrup, $[\alpha]_D + 8.7^\circ$ (*c* 1.0, CHCl₃)] and **7b** [61% total yield,

No.	[α] _D	¹ H NMR (ppm)
2a	+18° (<i>c</i> 1.0, CH ₃ OH)	500 MHz (CD ₃ OD): δ 1.26 (3H, d, J =6Hz), 2.92 (2H, br t, J =7Hz), 3.60 (1H, t, J =10Hz), 3.70 (1H, m), 3.74 (1H, dd, J =10 and 3Hz), 3.80 (1H, m), 3.87 (1H, dd, J =8 and 1Hz), 3.88 (1H, dd, J =3 and 2Hz), 4.21 (1H, d, J =8Hz), 4.95 (1H, d, J =8 Hz), 4.95 (1H, d, J)
2b	−19° (c 1.0, CH ₃ OH)	J = 2 Hz), 4.98 (1H, td, $J = 6$ and 6 Hz) 500 MHz (CD ₃ OD): δ 1.24 (3H, d, $J = 6$ Hz), 2.95 (2H, br t, $J = 7$ Hz), 3.23 (1H, ddd, J = 10, 8 and 2 Hz), 3.44 (1H, dd, $J = 10$ and 3 Hz), 3.49 (1H, t, $J = 10$ Hz), 3.82 (1H, br d, $J = 9$ Hz), 3.87 (1H, ddd, $J = 9$, 6 and 3 Hz), 3.97 (1H, d, $J = 3$ Hz), 4.14 (1H, d,
3a	$+22^{\circ}$ (<i>c</i> 0.9, CH ₃ OH)	J=9 Hz), 4.72 (1H, s), 4.96 (1H, tq, $J=6$ and 6 Hz) 400 MHz (CD ₃ OD + acetone <i>d</i> -6): δ 1.22 (3H, d, $J=6$ Hz), 3.11 (2H, br t, $J=8$ Hz), 3.65 (1H, m), 3.68 (1H, t, $J=10$ Hz), 3.72 (1H, dd, $J=10$ and 2 Hz), 3.74 (1H, dd, J=12 and 4 Hz), 3.78 (1H, m), 3.80 (1H, br d, $J=2$ Hz), 3.81 (1H, dd, $J=12$ and
3b	-26° (c 1.0, CH ₃ OH)	2 Hz), 4.88 (1H, br s) 270 MHz (CD ₃ OD): δ 1.14 (3H, d, $J=6$ Hz), 3.06 (2H, br t, $J=8$ Hz), 3.20 (1H, dd, $J=10$, 5 and 2 Hz), 3.47 (1H, dd, $J=10$ and 4 Hz), 3.60 (1H, t, $J=10$ Hz), 3.74 (1H, dd, $J=12$ and 5 Hz), 3.78 (1H, d, $J=4$ Hz), 3.86 (1H, dd, $J=12$ and 2 Hz),
13	−3.8° (c 1.1, CH ₃ OH)	3.91 (1H, m), 4.61 (1H, s) 270 MHz (CD ₃ OD): δ 1.14 (3H, d, $J = 6$ Hz), 2.88 (2H, m), 3.70 (1H, m)

Table 1. Physico-chemical properties of caloporoside analogs (2a, 2b, 3a, 3b and 13).

syrup, $[\alpha]_D - 29^\circ (c \ 1.0, \ \text{CHCl}_3)]^{3)}$.

The synthesis of the chain portion 14 began with the Wittig reactin of the phosphonium salt 8 and the aldehyde 9 using DMSO-NaH and *n*-BuLi in THF to give the bromo-olefin, which was treated with PPh₃ in MeCN at 80°C for 25 hours to give the other phosphonium salt 10 (90%, syrup)³⁾. The second Wittig reaction of 10 with the salicylic acid derivative 11 followed by catalytic reduction afforded the saturated alcohol 12 [64%, mp 80~81°C (toluene), $[\alpha]_D - 4.2^\circ$ (*c* 1.1, CHCl₃)]³⁾. This was de-*O*-methylated with LiCl in DMF at 150°C for 3 hours to give 13 [87%, mp 77~79°C (toluene), $[\alpha]_D - 3.8^\circ$ (*c* 1.1, MeOH)], which was identical with the naturally derived product in all respects^{1,2}.

Esterification of 13 with benzophenone hydrazone and HgO to give the benzhydryl ester, followed by benzylation with benzyl bromide and K_2CO_3 in Me₂CO, gave the alcohol 14 [85%, syrup, $[\alpha]_D$ -2.7° (c 1.1, CHCl₃)].

Coupling of the carboxylic acids **7a** and **7b** with the alcohol **14** was accomplished by the modified Yamaguchi's conditions³⁾ using 1-naphthoyl chloride to give the corresponding esters, which were submitted to hydrogenolysis in dioxane-aqueous AcOH to give the α -mannoside **2a** and β -mannoside **2b**, respectively (Table 1). **2a**: 58% total yield, syrup, $[\alpha]_D + 18^{\circ}$ (*c* 1.0, MeOH), FAB-MS (*m*/*z*) 731 (M-H)⁻. **2b**: 66% total yield, syrup, $[\alpha]_D - 19^{\circ}$ (*c* 1.0, MeOH), FAB-MS (*m*/*z*) 731 (M-H)⁻. The physico-chemical properties **2b** were identical with those for natural deacetyl-caloporoside²⁾.

The direct glycosylation of **5** with the chain portion **14** was also carried out by the aforementioned conditions (NIS, 0.15 M TfOH - CH₂Cl₂ in EtOAc, -40° C, 1 hour) to give the α -mannopyranoside **15a** [18%, syrup, [α]_D + 18° (*c* 0.9, CHCl₃)] and β -mannopyranoside **15b**

Table	2.	Inhi	ibitor	y act	tivitie	s of	caloporos	side	analogs	(2 a,
2b,	3a,	3b	and	13)	and	the	reference	co	mpounds	in
phospholipase C and $GABA_A$ receptor assays.										

Assaus	IC ₅₀ (μм/ml)								
Assays	2a	2b	3a	3b	13	Neomycin	Muscimol		
Phospholipase C	12	12	18	22	16	35			
GABAA	57	39	40	10	ND		2.9×10^{-3}		

[69%, syrup, $[\alpha]_D - 27^\circ$ (*c* 0.9, CHCl₃)]. The anomeric configurations of **15a** and **15b** were determined by NMR studies, especially based on the direct coupling constants between their anomeric carbons and protons [¹³C NMR (125 MHz) in CDCl₃]⁴): ¹*J*(¹³CH) 168 Hz and 152 Hz, respectively. Hydrogenolysis of **15a** and **15b** with 3.5 atm H₂ and 10% Pd-C in MeOH - CHCl₃ - AcOH (15:5:1) gave the corresponding acids **3a** and **3b** (Table 1). **3a**: 63%, $[\alpha]_D + 22^\circ$ (*c* 0.9, MeOH), FAB-MS (*m/z*) 553 (M-H)⁻, identical with natural product²).

The inhibitory activities for phospholipase C (rat brain) and the binding of the ligand to the $GABA_A/$ benzodiazepine chloride channel receptor complex (rat brain) *in vitro* were generally assayed by Cerep's system according to the methods reported by NAKANISHI⁵) and SNODGRASS⁶ groups, respectively, as summarized in Table 2. For phospholipase C, [³H]-phosphatidylinositol-4,5-biphosphate and neomycin were used as the substrate and reference compound⁵). [³H]-Labeled and unlabeled muscimol were used as the ligand and reference for GABA_A receptor⁶).

All caloporoside analogs 2a, 2b, 3a and 3b were found to show significant biological activities and inhibit

VOL. 49 NO. 7

strongly phospholipase C activities in almost same values. In GABA_A receptor ion channel, however, the β -mannoside analogs **2b** and **3b** showed stronger inhibitory activities of the binding of the ligand than their α -analogs **2a** and **3a**. Remarkably, the intact salicylic chain **13** exhibited strong inhibitory activity against phospholipase C, but no activity against the binding of the ligand in GABA_A receptor, suggesting that the chain portion **13** is essential for the appearance of the phospholipase C inhibitory activities at least.

Acknowledgments

We are grateful to Meiji Seika Kaisha, Ltd., Shikoku Chemical Co. and Yamanouchi Pharmaceutical Co. Ltd. for the generous support of our program.

> Kuniaki Tatsuta* Shohei Yasuda

Graduate School of Science and Engineering, Advanced Research Center for Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku, Tokyo 169, Japan

(Received March 25, 1996)

References

- WEBER, W.; P. SCHU, T. ANKE, R. VELTEN & W. STEGLICH: Caloporoside, a new inhibitor of phospholipase C. J. Antibiotics 47: 1188~1194, 1994
- SHAN, R.; H. ANKE, M. NIELSEN, O. STERNER & M. R. WITT: The isolation of two fungal inhibitors of ³⁵S-TBPS binding to the brain GABA_A/benzodiazepine chloride channel receptor complex. Nat. Prod. Lett. 4: 171~178, 1994
- TATSUTA, K. & S. YASUDA: Total synthesis of deacetyl-caloporoside, a novel inhibitor of the GABA_A receptor ion channel. Tetrahedron Lett. 37: 2453~2456, 1996
- BOCK, K. & C. PEDERSEN: A study of ¹³CH coupling constants in hexopyranoses. J. Chem. Soc. Perkin II 1974: 293~297
- NAKANISHI, H.; H. NOMURA, U. KIKKAWA, A. KISHIMOTO & Y. NISHIZUKA: Rat brain and liver phospholipase C: resolution of two forms with different requirements for calcium. Biochem. Biophys. Res. Comm. 132: 582~590, 1985
- SNODGRASS, S. R.: Use of [³H]muscimol for GABA receptor studies. Nature 273: 392~394, 1978